Industry 4.0 Sustainable Industrial Approach

Dr. Vikram Bansal • Mrs. Deepthi B.

Sultan Chand & Sons

INDUSTRY 4.0

Sustainable Industrial Approach

Dr. Vikram Bansal

Assistant Professor Atal Bihari Vajpayee School of Management & Entrepreneurship, Jawaharlal Nehru University, New Delhi

Mrs. Deepthi. B.

Lecturer in Commerce Mahatma Jyothiba Phule Telangana BC Welfare Degree College for Women, Wargal, Government of Telangana

SULTAN CHAND & SONS

Educational Publishers New Delhi

SULTAN CHAND & SONS®

Educational Publishers

23, Daryaganj, New Delhi-110 002

Phones : 011-23281876, 23266105, 41625022 (Showroom & Shop) 011-23247051, 40234454 (Office)

E-mail : sultanchand74@yahoo.com; info@sultanchandandsons.com

Fax : 011-23266357; Website : www.sultanchandandsons.com

ISBN: 978-81-979992-2-2 (TC 1318)

Price: ₹ 325.00

First Edition : 2025

EVERY GENUINE COPY OF THIS BOOK HAS A HOLOGRAM

In our endeavour to protect you against counterfeit/fake books, we have pasted a copper hologram over the cover of this book. The hologram displays the full visual image, unique 3D multi-level, multi-colour effects of our logo from different angles when tilted or properly illuminated under a single light source, such as 3D depth effect, kinetic effect, pearl effect, gradient effect, trailing effect, emboss effect, glitter effect, randomly sparking tiny dots, micro text, laser numbering, etc.

A fake hologram does not display all these effects.

Always ask the bookseller to put his stamp on the first page of this book.

- All Rights Reserved: No part of this book, including its style and presentation, may be reproduced, stored in a retrieval system, or transmitted in any form or by any means-electronic, mechanical, photocopying, recording or otherwise without the prior written consent of the Publishers. Exclusive publication, promotion and distribution rights reserved with the Publishers.
- **Warning:** The doing of an unauthorised act in relation to a copyright work may result in both civil claim for damages and criminal prosecution.
- **Special Note:** Photocopy or Xeroxing of educational books without the written permission of Publishers is illegal and against Copyright Act. Buying and selling of pirated books is a criminal offence. Publication of key to this is strictly prohibited.

General: While every effort has been made to present authentic information and avoid errors, the author and the publishers are not responsible for the consequences of any action taken on the basis of this book.

- Limits of Liability/Disclaimer of Warranty: The publisher and the author make no representation or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damage arising herefrom.
- **Disclaimer:** The publisher have taken all care to ensure highest standard of quality as regards typesetting, proofreading, accuracy of textual material, printing and binding. However, they accept no responsibility for any loss occasioned as a result of any misprint or mistake found in this publication.
- Author's Acknowledgement: The writing of a Textbook always involves creation of a huge debt towards innumerable author's and publications. We owe our gratitude to all of them. We acknowledge our indebtedness in extensive footnotes throughout the book. If, for any reason, any acknowledgement has been left out we beg to be excused. We assure to carry out correction in the subsequent edition, as and when it is known.

Printed at : Himani Print Solution, Badarpur, New Delhi-110044.

P

Preface

In the current era of rapid technological advancement, Industry 4.0 stands at the forefront, revolutionizing the landscape of business operations, manufacturing, and consumer engagement. The integration of digital technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), and Big Data Analytics is reshaping industries, creating unprecedented opportunities for efficiency and innovation. However, as we embrace these technological advancements, it becomes imperative to consider their impact on sustainability.

"Industry 4.0: Sustainable Industrial Approach" delves into the intersection of advanced industrial technologies and sustainable practices. This book aims to provide a comprehensive understanding of how businesses can leverage Industry 4.0 technologies to drive not only economic growth but also environmental and social sustainability. Through a series of in-depth analyses, case studies, and expert insights, we explore how digital transformation can be aligned with sustainable development goals.

The concept of sustainability in industry is no longer a mere option but a necessity. As the global community grapples with climate change, resource depletion, and social inequalities, businesses are uniquely positioned to lead the charge towards a more sustainable future. Industry 4.0 offers a powerful toolkit to address these challenges. From optimizing resource utilization and minimizing waste to enhancing supply chain transparency and fostering circular economy models, the potential for positive impact is immense.

This book is structured to guide readers through the theoretical foundations of Industry 4.0, followed by practical applications and strategies for implementing sustainable practices. Each chapter is designed to equip business leaders, policymakers, and scholars with the knowledge and tools needed to navigate the complexities of this transformative era. We highlight real-world examples of companies that have successfully integrated Industry 4.0 technologies with sustainability initiatives, providing a roadmap for others to follow.

In writing this book, our goal is to inspire a paradigm shift in how businesses operate and innovate. We envision a future where technological progress and sustainability go hand in hand, creating value not just for shareholders but for society at large. By embracing a sustainable business approach, we can ensure that the benefits of Industry 4.0 extend beyond economic gains, fostering a resilient and equitable world for generations to come.

We extend our gratitude to the experts, researchers, and practitioners who have contributed their knowledge and experience to this book. Their insights have been invaluable in shaping a comprehensive and forward-thinking perspective on Industry 4.0 and sustainability.

We hope this book serves as a valuable resource and a source of inspiration for all those committed to driving sustainable innovation in the age of Industry 4.0.

Feel free to suggest any changes or specific elements you'd like to include!

Dr. Vikram Bansal Mrs. Deepthi. B.

Acknowledgments

Writing this book has been an incredible journey, and we are deeply grateful to those who have supported us along the way. We would also like to extend our gratitude to our friends and colleagues. Your insightful feedback, stimulating discussions, and words of encouragement have enriched this book in many ways.

To the academic and professional communities who have embraced the principles of Industry 4.0 and sustainability, thank you for your pioneering work and for setting the foundation upon which this book is built. Your research, innovations, and dedication to creating a better future have been a constant source of inspiration.

We are also grateful to our publisher, Sultan Chand & Sons and the entire editorial team. Your professionalism, meticulous attention to detail, and unwavering support have made this book a reality. Thank you for believing in this project and for guiding us through the publishing process with such expertise and care.

Finally, we would like to thank the readers of this book. Your interest in integrating Industry 4.0 with sustainable industry practices is a testament to your commitment to creating a more sustainable and equitable world. I hope this book serves as a valuable resource on your journey toward achieving those goals.

Dr. Vikram Bansal Mrs. Deepthi. B.

C

Contents

1. Introduction to Industry 4.0 and Sustainable Industrial Approach	
1.1. Understanding Industry 4.0	1
1.1.1. Evolution of Industrial Revolutions	1
1.1.2. Core Technologies of Industry 4.0	3
1.1.3. Implications for Industry and Society	5
1.2. Conceptualizing Sustainable Industrial Approach	6
1.2.1. Definition and Principles of Sustainability	8
1.2.2. Linkages between Industry 4.0 and Sustainability	9
1.2.3. Importance of Sustainable Industrial Practices	12
1.3. Lets Sum Up	13
Self Assessment Questions	15
Answers to Self Assessment Questions	17
2. Enabling Technologies for Sustainable Industry 4.0	19-49
 Enabling Technologies for Sustainable Industry 4.0 2.1. Internet of Things (IoT) and Sustainability 	19-49 21
2.1. Internet of Things (IoT) and Sustainability	21
2.1. Internet of Things (IoT) and Sustainability2.1.1. IoT Applications in Sustainable Manufacturing	21 22
2.1. Internet of Things (IoT) and Sustainability2.1.1. IoT Applications in Sustainable Manufacturing2.1.2. IoT-enabled Resource Optimization	21 22 23
 2.1. Internet of Things (IoT) and Sustainability 2.1.1. IoT Applications in Sustainable Manufacturing 2.1.2. IoT-enabled Resource Optimization 2.2. Artificial Intelligence (AI) and Sustainability 	21 22 23 26
 2.1. Internet of Things (IoT) and Sustainability 2.1.1. IoT Applications in Sustainable Manufacturing 2.1.2. IoT-enabled Resource Optimization 2.2. Artificial Intelligence (AI) and Sustainability 2.2.1. AI-driven Decision-Making for Sustainability 	21 22 23 26 27
 2.1. Internet of Things (IoT) and Sustainability 2.1.1. IoT Applications in Sustainable Manufacturing 2.1.2. IoT-enabled Resource Optimization 2.2. Artificial Intelligence (AI) and Sustainability 2.2.1. AI-driven Decision-Making for Sustainability 2.2.2. Predictive Maintenance and Energy Efficiency 	21 22 23 26 27 30
 2.1. Internet of Things (IoT) and Sustainability 2.1.1. IoT Applications in Sustainable Manufacturing 2.1.2. IoT-enabled Resource Optimization 2.2. Artificial Intelligence (AI) and Sustainability 2.2.1. AI-driven Decision-Making for Sustainability 2.2.2. Predictive Maintenance and Energy Efficiency 2.3. Big Data Analytics and Sustainability 	21 22 23 26 27 30 34
 2.1. Internet of Things (IoT) and Sustainability 2.1.1. IoT Applications in Sustainable Manufacturing 2.1.2. IoT-enabled Resource Optimization 2.2. Artificial Intelligence (AI) and Sustainability 2.2.1. AI-driven Decision-Making for Sustainability 2.2.2. Predictive Maintenance and Energy Efficiency 2.3. Big Data Analytics and Sustainability 2.3.1. Data-driven Insights for Waste Reduction 	21 22 23 26 27 30 34 36
 2.1. Internet of Things (IoT) and Sustainability 2.1.1. IoT Applications in Sustainable Manufacturing 2.1.2. IoT-enabled Resource Optimization 2.2. Artificial Intelligence (AI) and Sustainability 2.2.1. AI-driven Decision-Making for Sustainability 2.2.2. Predictive Maintenance and Energy Efficiency 2.3. Big Data Analytics and Sustainability 2.3.1. Data-driven Insights for Waste Reduction 2.3.2. Supply Chain Optimization through Data Analytics 	21 22 23 26 27 30 34 36 37

3. Sustainable Manufacturing Practices in Industry 4.0	51-86
3.1. Lean Manufacturing and Sustainability	52
3.1.1. Lean Principles for Waste Reduction	54
3.1.2. Lean Implementation in Smart Factories	56
3.2. Green Production and Sustainability	58
3.2.1. Eco-friendly Manufacturing Processes	60
3.2.2. Renewable Energy Integration in Manufacturing	62
3.3. Circular Economy Strategies in Industry 4.0	68
3.3.1. Closing the Loop: Reuse, Recycle, and Remanufacture	72
3.3.2. Circular Supply Chains and Product Lifecycle Management	76
3.4. Lets Sum Up	82
Self Assessment Questions	83
Answers to Self Assessment Questions	86
4. Policy and Regulatory Frameworks for Sustainable Industry 4.0	87-117
4.1. Government Initiatives and Incentives	89
4.1.1. Tax Credits for Sustainable Practices	89
4.1.2. Regulatory Compliance and Reporting Requirements	93
4.2. International Standards for Sustainable Manufacturing	94
4.2.1. ISO 14001: Environmental Management Systems	96
4.2.2. ISO 50001: Energy Management Systems	99
4.3. Corporate Social Responsibility (CSR) in Industry 4.0	101
4.3.1. Stakeholder Engagement and Transparency	103
4.3.2. Integrating CSR into Business Strategies	111
4.4. Lets Sum Up	112
Self Assessment Questions	113
Answers to Self Assessment Questions	117
5. Implementation Strategies	119-145
5.1. Adoption Roadmaps for Sustainable Industry 4.0	119
5.1.1. Phased Implementation Approaches	121
5.1.2. Overcoming Implementation Challenges	122
5.2. Collaborative Partnerships for Sustainability	124
5.2.1. Industry-Academia Collaboration	129
5.2.2. Public-Private Partnerships	130
5.3. Case Studies of Successful Implementation	131
5.3.1. Sustainable Transformation of Traditional Industries	131
5.3.2. Small and Medium Enterprises (SMEs) Embracing Sustainal	oility 133
5.4. Performance Metrics and Evaluation	135
5.4.1. Key Performance Indicators (KPIs) for Sustainable Manufac	turing 136
5.4.2. Monitoring and Continuous Improvement Processes	139
5.5. Lets Sum Up	141
Self Assessment Questions	142
Answers to Self Assesment Questions	145

5. Er	erging Trends and Future Directions	147-171
	6.1. Advancements in Technology and Innovation	147
	6.1.1. Next-generation Technologies for Sustainability	149
	6.1.2. Impact of Industry 5.0 on Sustainable Business Practices	151
	6.2. Global Trends Shaping Sustainable Manufacturing	153
	6.2.1. Climate Change Mitigation Strategies	155
	6.2.2. Circular Economy Initiatives on a Global Scale	157
	6.3. Challenges and Opportunities Ahead	159
	6.3.1. Addressing Resource Scarcity and Environmental Degradation	161
	6.3.2. Capitalizing on Market Opportunities and Consumer Preference	
	6.4. Policy Implications and Advocacy Efforts	163
	6.4.1. Advocacy for Stronger Environmental Regulations	164
	6.4.2. Promoting Sustainability through Trade Policies and Agreement	
	6.5. Lets Sum Up	166
	Self Assessment Questions	167
	Answers to Self Assessment Questions	171
Ca	e Studies	173-212
	Leveraging Industrial Internet of Things (IIoT) for	
	Optimal Inventory Management in a Manufacturing Plant	173
	Optimizing Manufacturing Processes through Data Analytics and Machine Learning	175
	Centralizing Operations with Cloud Computing for	
	Enhanced Manufacturing Efficiency	177
	Enhancing Manufacturing Efficiency with Collaborative Robots (Cobots)	180
	Leveraging 3D Printing for Mass Customization and Tooling in Industry 4.0	183
	Team Penske's Use of Digital Twins in Motor Racing	186
	Leveraging Augmented Reality (AR) for Enhanced Surgical Precision	188
	StePac PPC Shifts to Real-Time Production Management	191
	Transforming Logistics with Industry 4.0:	
	The Implementation of IoT Technology at DHL Supply Chain	193
	Transforming Manufacturing with Predictive Maintenance at Siemens	196
	Enhancing Retail Operations with AI-Driven Inventory Management at Walma Transforming Production Efficiency with Robotic Process Automation at	ırt 198
	TechFusion Industries	201
1	Enhancing Customer Experience with AI-Powered Chatbots at FinTech Solutions In	nc. 203
1	AI-Driven Customer Insights at EcoGoods Corp.	205
1	Smart Manufacturing Solutions at Apex Robotics Inc.	207
1	Bosch Comprehensive Industry 4.0 Deploying IoT	209
1	Maruti Suzuki India and Industry 4.0	211
G	ssary	213-216
Re	erences	217-222

F

List of Figures

Fig. No.	Pages
1.1 : Components of Industry 4.0	2
1.2 : Key Principles of Industry 4.0	5
1.3 : Circular Economy	8
1.4 : Linkages between Industry 4.0	
and Sustainability	10
2.1 : Key Technologies of Industry 4.0	20
2.2 : Internet of Things (IoT)	21
2.3 : IoT Applications in Manufacturing	g 22
2.4 : IoT and Sustainability	25
2.5 : AI to Achieve SDGs	27
2.6 : Predictive Maintenance	30
2.7 : Big Data Analytics	35
2.8 : Supply Chain Optimization throug	,h
Data Analytics	38
2.9 : Inventory Management	42
2.10 : Supply Chain Risk	45
3.1 : Principles of Lean Manufacturing	54
3.2 : Lean Manufacturing Components	55
3.3 : Smart Factory	57
3.4 : Industry 4.0 for Sustainability	59
3.5 : Environmental Assessment	61
3.6 : Renewable Energies in the	
Building Sector	64
3.7 : Impact of Renewable Energy	
Projects	65

Fig. No.	Pages
3.8 : Industry 4.0 Connectivity	69
3.9 : Industry 4.0 for Circular Economy	72
3.10 : Remanufacturing	73
4.1 : Production Framework	88
4.2 : ISO 14001 Certification	97
4.3 : ISO 50001 Energy Management	
System	100
4.4 : CSR Process	103
4.5 : Stakeholders	105
4.6 : Stakeholder Engagement	107
4.7 : Effective Stakeholder Management	107
5.1 : Industry 4.0 Implementation	
Framework	120
5.2 : Phase-wise Implementation	123
5.3 : UIP Dataset and Tools	126
6.1 : Technology Innovation	148
6.2 : Sustainability	150
6.3 : Industry 5.0 Key Principles	152
6.4 : Sustainable Manufacturing	154
6.5 : Conventional Mitigation	
Technologies	157
6.6 : Circular Economy Initiatives	
Worldwide	158
6.7 : Convergence of Future Trends	161
6.8 : Environmental Advocacy Trend	165

Τ

List of Tables

Table No. Pag	ges
2.1 : Advantages and Disadvantages of	
IoT-enabled Resource Optimization	25
2.2 : AI Application in Different Sectors	
and their Description	28
2.3 : Predictive Maintenance and Energy	
Efficiency Initiatives Across Diverse	
Sectors	33
2.4 : Disadvantages of Predictive	
Maintenance	33
2.5 : Transportation and Logistics	
Optimization	39
2.6 : Warehouse Management and	
Optimization	40
3.1 : Advantages and Disadvantages of	
Lean Implementation in Smart	
Factories	57
3.2 : Eco-friendly Manufacturing Process	62
3.3 : Circular Economy Principles and	
Strategies	70
3.4 : Advantages and Disadvantages of	
Closing the Loop Strategy	74
3.5 : Examples of Closing the Loop	
Strategy	75

Table No. Pages		
3.6 : Meaning	, Definition of Circular	
Supply C	Chains and Product	
Lifecycle	Management 76	
•	s and Implementation 78	
	antages and Disadvantages	
of Tax Cı	edits for Sustainable	
Practices	92	
4.2 : Strategies	s for Effective Stakeholder	
Engagem	lent 109	
4.3 : Tools and	l Techniques for	
Transpare	ency 110	
4.4 : Challeng	es and Barriers 110	
5.1 : Principle	s of Building Trust and	
Transpare	ency 128	
5.2 : Performa	nce Metrics Definition	
and Exan	nples 135	
5.3 : Advantag	ges and Disadvantages of	
Key Perf	ormance Indicator (KPI)	
for Susta	inable Manufacturing 138	
5.4 : Tools/Teo	chnologies for Monitoring	
	inuous Improvement	
Processes	-	

A

Abbreviations

- AI : Artificial Intelligence
- IIoT : Industrial Internet of Things
- IoT : Internet of Things
- AR : Augmented Reality
- VR : Virtual Reality
- ML: Machine Learning
- DL : Deep Learning
- CPS: Cyber-Physical Systems
- ICT : Information and Communication Technology
- ERP: Enterprise Resource Planning
- MES : Manufacturing Execution System
- PLC : Programmable Logic Controller
- HMI : Human-Machine Interface
- SCM: Supply Chain Management
- CNC: Computer Numerical Control
- RFID : Radio Frequency Identification
- PLC : Programmable Logic Controller
- CNC: Computer Numerical Control
- CAD : Computer-Aided Design
- CAM : Computer-Aided Manufacturing
- BIM : Building Information Modeling

- PLM : Product Lifecycle Management
- EAM : Enterprise Asset Management
- DCS: Distributed Control System
- SCADA : Supervisory Control and Data Acquisition
 - FMS: Flexible Manufacturing System
 - AGV : Automated Guided Vehicle
 - AM : Additive Manufacturing
 - BDA: Big Data Analytics
 - BMS : Building Management System
 - CPS: Cyber-Physical Systems
 - 5G : Fifth Generation Mobile Network
 - LCA: Life Cycle Assessment
 - CSR : Corporate Social Responsibility
 - ESG : Environmental, Social, and Governance
 - KPI: Key Performance Indicator
 - LED: Light Emitting Diode
 - PV : Photovoltaic
 - EV : Electric Vehicle
 - ESG : Environmental, Social, and Governance

A

About the Authors

Dr. Vikram Bansal is a distinguished academic and professional with extensive expertise in the field of Management Science, with a particular focus on Sustainable Business Practices, Tourism, and Entrepreneurship. Dr. Bansal's professional journey is diverse, ranging from academic roles to business development in the private sector. This is reflected in his teaching, which spans both postgraduate and doctorate levels. He has held various key positions, including as an Associate Professor and Head of Department. He is currently faculty at the Atal Bihari Vajpayee School of Management and Entrepreneurship at Jawaharlal Nehru University (JNU), New Delhi, where he specializes in Marketing Management, Entrepreneurship, and Industry 4.0.

In addition to teaching, Dr. Bansal has been actively involved in research and consultancy projects. He has led projects sponsored by NITI Aayog, Government of India, and the Indian Council of Social Science Research, focusing on Industry 4.0 and MSMEs. His research interests lie in exploring the nexus between technology and sustainable business practices, with numerous publications to his name in national and international journals. These publications cover a range of topics from Start-ups' ecosystem and Indian Knowledge System in management area. He is also an active member of various editorial boards and academic societies, contributing to the broader management and social sciences research community.

With a career spanning academia and industry, Dr. Vikram Bansal continues to contribute significantly to the discourse on sustainable development and innovation in the contemporary business era.

Deepthi B. is a distinguished and accomplished educator, researcher, and academician who has significantly contributed to business adoption of commerce and technology. Currently, she serves as a faculty in the Commerce Department at Mahatma Jyothiba Phule Telangana BC Welfare (MJPTBCW) Degree College for Women under the Government of Telangana, India. Her role at the institution is marked by her commitment to excellence in teaching and mentoring, where she continually strives to inspire and educate the next generation of business professionals and entrepreneurs.

Her academic achievements are notable, with Deepthi being JRF qualified, credentials that reflect her scholarly prowess and dedication to advancing her expertise. In pursuit of higher academic distinction, she is currently doing her doctorate at the prestigious Jawaharlal Nehru University (JNU), New Delhi. Her doctoral research aligns with her deep interest in the intersection of technology and business, particularly focusing on the role of Industry 4.0 in shaping the future of small and medium-sized enterprises (SMEs).

Her work continues to inspire not only her students but also her peers and industry professionals who seek to understand and navigate the complexities of modern business environments. Through her research, publications, and teaching, Deepthi B. remains a key contributor to the ongoing transformation of business practices in the digital era.

A Dive into the World of Blockchain Technology

Ms. Sakshi Ahlawat • Dr. Upendra Pratap Singh Dr. Deepti • Dr. Pawan Kumar

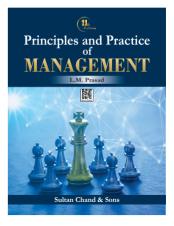
Salient Features

This is a textbook that focuses on providing an insight into the world of Blockchain Technology for students who are Beginners and interested in learning about the real world applications of the Technology. The following are the salient features of the book:

- Introduces the concept and origin of Blockchain to Beginners.
- Explains the implementation of Blockchain in various Sectors.
- Explores the uses of Blockchain in sectors like Education, Legal Industry, Land Records, Financial Sector, Global Supply Chain, Healthcare, Airlines, and Payment Channels.
- Explains the concept of Tokenized Economy through Blockchain.
- Advocates and explores the issues related to governance of a Decentralized Blockchain Network.
- Familiarize students with the technology and software's used for implementation of Blockchain.
- Introduces the Ethereum Network and various Applications of Ethereum in the technology world.
- Introduces Solidity, the most used programming language used for Ethereum platform.
- Explores the future of the Blockchain Technology.

Contents

- · Blockchain for Beginners
- · Bitcoins or Genesis of Blockchain Technology
- Model of Blockchain Technology Implementation
- Role of Blockchain Technology in Education
- Role of Blockchain Technology in Legal Industry
- Role of Blockchain Technology Technology in maintaining Land Records
- Role of Blockchain Technology in the Financial Sector
- Role of Blockchain Technology in Global Supply Chain
- · Role of Blockchain Technology in Health Sector
- Role of Blockchain Technology in Aviation Sector
- · Role of Blockchain Technology in Payment Systems
- · Role of Blockchain Technology in Tokenized Economy
- · Governance of Blockchain Technology
- Tools and Software used for Blockchain Technology or Technology behind Blockchain Technology
- · Ethereum Network and its Applications
- Solidity
- Future of Blockchain Technology


Principles and Practice of Management

L.M. Prasad

About the Book

The Revised 11th edition of *Principles and Practice of Management* continues to build on our commitment to reflect the latest advancements in management theory and practice. The book proudly introduces a new chapter: "Role of Indian Ethos in Managerial Practice". This chapter emphasizes the increasing relevance of integrating cultural and philosophical perspectives into contemporary management.

Indian traditions offer profound insights into ethical leadership and decision-making. This new chapter examines how concepts from Indian philosophy, such as *Dharma* and *Karma*, can complement modern management

practices, providing a richer, more comprehensive approach to leadership and organizational behavior.

Contents

Part I – Conceptual Framework of Management

- Introduction to Management
- Development of Management Thought
- Management Challenges and Opportunities
- Social Responsibility and Ethics

Part II – Planning

- Fundamentals of Planning
- Organizational Plans
- Decision Making

Part III - Organizing

- · Fundamentals of Organizing
- · Power and Authority
- Conflict and Coordination
- Organizational Change

Part IV - Staffing

- Fundamentals of Staffing
- Employee Development and Performance Appraisal

Part V – Directing

- Fundamentals of Directing
- Motivation
- Leadership
- Communication

Part VI - Controlling

- Fundamentals of Controlling
- Control Techniques

Part VII – Management Practices

- Management Practices of Prominent Countries and Business Leaders
- Role of Indian Ethos in Managerial Practice

Appendices Glossary Subject Index

About the Book

The book "Industry 4.0: A Sustainable Industrial Approach" explores the intersection between cutting-edge technologies and sustainable Industrial practices. It highlights how Industry 4.0, the current wave of digital transformation, integrates technologies like the Internet of Things (IoT), Artificial Intelligence (AI), Big Data Analytics, and Cyber-Physical Systems (CPS) into traditional manufacturing. These innovations form the foundation of what is known as the "smart factory."

The authors trace the evolution of industrial revolutions, emphasizing how Industry 4.0 aims to enhance efficiency, flexibility, and resource optimization. By linking advanced technologies with sustainability, this book illustrates how industries can reduce waste, conserve energy, and adopt eco-friendly practices while remaining competitive in a rapidly changing global market.

In addition to the technical advancements, the book delves deeply into the principles of sustainability, such as reducing environmental impacts, fostering social equity, and ensuring economic viability. The authors propose that these principles, combined with Industry 4.0 technologies, offer a comprehensive path to a more sustainable future for industries across the globe. Throughout the chapters, the book presents case studies, best practices, and roadmaps for companies aiming to transition into Industry 4.0. These real-world examples illustrate how industries, from large corporations to small and medium-sized enterprises (SMEs), are embracing digitalization and sustainability.

The final chapters explore the case studies mapped to each chapter provide valuable insights into how different industries and companies are implementing sustainable practices in line with Industry 4.0 principles. the book encourages businesses to think not just about profit, but also about their environmental and social impact, urging a long-term, holistic approach to business operations.

This book is a valuable resource for academicians, business leaders, technologists, and policymakers looking to understand how Industry 4.0 can drive sustainability, innovation, and economic growth simultaneously.

Explore More

Visit our Website at:

Preview of the Book:

Sultan Chand & Sons

Publishers of Standard Educational Textbooks

23 Daryaganj, New Delhi-110002 Phones (S) : 011-23281876, 23266105, 41625022 (O): 011-23247051, 40234454 Email : sultanchand74@yahoo.com info@sultanchandandsons.com

